This blog post shows how a plain Kubernetes cluster is automatically created and configured on three arm64 devices using an orchestration tool called Ansible. The main focus relies on Ansible; other components that set up and configure the cluster are Docker, Kubernetes, Helm, NGINX, Metrics Server and Kubernetes Dashboard. Individual steps are covered more or less; the whole procedure follows three principles:
Continue readingAutomation
Automate Performance Optimization
In order to display a website as quickly as possible, performance optimization is necessary. Since manual optimization can be time-consuming and often several steps need to be performed, automating performance optimization can be a good idea. This in turn can include, for example, reporting (speed analysis of the website) and performance optimization itself (compression, code reduction, …).
This article gives an overview of where automation can be used, which tools are suitable for this and what these tools offer.
Multiplayer TypeScript Application run on AWS Services
Daniel Knizia – dk100@hdm-stuttgart.de
Benjamin Janzen – bj009@hdm-stuttgart.de
The project

Continue readingCatchMe is a location-based multiplayer game for mobile devices. The idea stems from the classic board game Scotland Yard, basically a modern version of hide & seek. You play in a group with up to 5 players outside, where on of the players gets to be chosen the “hunted”. His goal is trying to escape the other players. Through the app he can constantly see the movement of his pursuers, while the other players can only see him in set intervals.
The backend of the game builds on Colyseus, a multiplayer game server for Node.js, which we have adjusted to our needs. There’s a lobby, from which the players can connect into a room with other players and start the game.
Building an HdM Alexa Skill – Part 4
Continuous Integration
This is the last part in our series of blog posts concerning the development of an Alexa Skill. If you missed the previous parts you can catch up by reading part 1 here, part 2 here and part 3 here.
Introduction
Every student group that has worked on a software project can retell the following situation: you’re one week ahead of the deadline, every team member has spent the last weeks working on their part of the project. So far, everything looks great – every module works on its own, the GUI is designed and implemented, the database is modeled and set up, client and server are both running smoothly. All that’s left is combining all the bits and pieces to see everything in action together. Easy, right? Fast forward another five days, it’s the weekend before the final presentation: the air is thick with panic with everyone furiously debugging their code, solving merge conflicts left and right while trying to get the project to some kind of working state that will at least survive the demo. Things that were already working in isolation are now broken and quite a bunch of features that were an inch close to completion will never make it into the presentation. So what has gone wrong? And what have we done to prevent the same from happening with our Alexa Skill?
Automate deployment with the Unreal Engine using the Unreal Automation Tool (UAT)
The Unreal Engine 4 from Epic Games is a powerful tool to create any type of game or even application, however the implemented automation and build system is barely documented, if at all. This post will show the necessary steps to build, cook and package a game using the Unreal Automation Tool (UAT) and gives a brief overview over the somewhat hidden tools.
You must be logged in to post a comment.