Multiplayer Game with AWS | StadtLandFluss

Dieser Blogbeitrag soll einen Einblick in die Entwicklung unserer Webanwendung mit den unten definierten Funktionen geben sowie unsere Lösungsansätze, Herausforderungen und Probleme aufzeigen. 

Cloud Computing Vorlesung

Ziel der Vorlesung “Software Development for Cloud Computing” ist es, aktuelle Cloud Technologien kennen zu lernen und diese im Rahmen von Übungen und kleinen Projekten anzuwenden. Unser Team hat sich im Rahmen dieser als Prüfungsleistung zu erbringenden Projektarbeit dazu entschieden, das bekannte Spiel „Stadt, Land, Fluss“ als Multiplayer-Online Game umzusetzen. 

Projekt Idee & Inspiration

Zu Beginn der Vorlesung war sich unsere Projektgruppe noch sehr unsicher, was wir als Projekt mit Cloudkomponenten umsetzen wollten, da wir noch keine bis sehr geringe Vorerfahrung in der Cloud-Entwicklung hatten. Erste Brainstormings hatten ergeben, dass wir gerne eine Webanwendung entwerfen wollten. Jedoch war es gar nicht so leicht Zugriff zu interessanten Daten zu bekommen. 

Letztendlich hat sich unsere Gruppe dazu entschieden, sich nicht von Daten abhängig zu machen, sondern etwas Eigenes zu kreieren. 

Die Inspiration für unsere finale Idee (Stadt-Land-Fluss) war das Online-Spiel Skribbl IO, ein kostenloses Multiplayer-Zeichen- und Ratespiel. Dabei wird in jeder Runde ein Spieler ausgewählt, der etwas zeichnet, das die anderen erraten sollen. Skribbl ermöglicht es dem Spieler auch, einen eigenen Raum zu erstellen und Freunde einzuladen, die einen Link zu diesem Raum teilen.

Im Rahmen unseres Projektes hat uns die Idee gefallen etwas zu entwickeln, was man danach mit Freunden zusammen nutzen kann. Den Multiplayer Ansatz fanden wir spannend, da wir so etwas noch nie umgesetzt haben. Da wir alle Stadt-Land-Fluss Fans sind, fiel unsere Wahl auf dieses Spiel. 

Ziel

Primäres Ziel des Projektes war es für uns, erste Erfahrungen in Cloud-Computing zu sammeln und gleichzeitig unsere Fähigkeiten im Software-Engineering auszubauen. 

Konkret war es die Idee ein Stadt-Land-Fluss Spiel mit den folgenden Funktionalitäten zu entwickeln: 

  • Schritt 1: Raumerstellung
    • Spieler kann einen neuen Raum erstellen, oder über eine Raum-Id einem Raum beitreten
  • Schritt 2: Spieldaten bestimmen
    • Der Spieler, welcher einen Raum erstellt, soll die Kategorien selber bestimmen können, sowie die Zeit, welche man für das Ausfüllen einer Spielrunde hat, ebenfalls sollen Mitspieler- und Rundenanzahl bestimmt werden können
  • Schritt 3: Waiting Room 
    • Nach Erstellen oder Beitreten eines Raumes, kommt der Spieler in einem Warteraum, wo er die festgelegten Parameter der Spielrunden sieht und informiert wird, welche Spieler der Runde schon beigetreten sind 
  • Schritt 4: Letter Generator 
    • Der Buchstabe für eine Runde soll zufällig generiert werden, sich aber nicht wiederholen innerhalb eines Spiels
  • Schritt 5: Spielrunde
    • Auf der Seite der Texteingaben, soll ein Spieler die Runde stoppen können, sobald er alles ausgefüllt hat, dies triggert den Stopp bei allen Mitspielern
  • Schritt 6: Kontrollieren der Eingaben 
    • Alle Spieler sehen nach einer Runde ihre eigenen, aber auch alle anderen Eingaben der Mitspieler sowie die Punkte, die dabei erreicht wurden
    • Dabei werden die Punkte nach folgendem Schema berechnet:
      • Hat ein Spieler als Einziger in dieser Kategorie eine Eingabe und ist diese auch gültig (beginnt mit dem generierten Buchstaben), dann erhält er für dieses Feld 20 Punkte
      • Haben andere in diesem Feld auch Eingaben, erhält der Spieler für eine gültige Eingabe 10 Punkte
      • Hat ein anderer Spieler in der gleichen Kategorie die gleiche Angabe, erhält der Spieler 5 Punkte
      • Ist die Eingabe leer oder beginnt sie nicht mit dem generierten Buchstaben, werden keine Punkte vergeben
  • Schritt 7 : Hall of Fame  
    • Darstellung der Spieler-Ränge und ihrer Punkte nach Abschließen aller Runden

Das erste Mockup der zu erstellenden Webanwendung entsprach folgendem Design und war unser Leitfaden für die Entwicklungsphase: 

Skizze der groben Web Anwendung zu Beginn

Einblick in das Spiel – Demo 

Frameworks – Cloud Services – Infrastructure

Frontend

Aufgrund von vorhandenen Vorerfahrungen wurde die zweite Entscheidung getroffen, das Frontend mit Hilfe des Angular Frameworks umzusetzen. Angular ist ein TypeScript-basiertes Front-End-Webapplikationsframework. Das Backend wurde mit Python als Programmiersprache umgesetzt. Zum einen war hier mehr Vorerfahrung vorhanden bei einigen Teammitgliedern und zum anderen haben wir mehr Beispiele zur Anwendung von Websockets und AWS im Zusammenhang mit Angular gefunden, was uns sehr geholfen hat. 

Backend

Wie zu Beginn schon erwähnt, hat uns die parallel zum Projekt laufende Vorlesung gleich zu Beginn den großen Funktionsumfang von AWS aufgezeigt.  Besonders interessant fanden wir die Einsatzmöglichkeiten von Lambda Funktionen. Im Zusammenhang damit hat uns die Funktion gefallen ein API Gateway aufzubauen zu können. Da man bei der Programmiersprache völlig frei wählen kann, haben wir uns für Python entschieden. In der Python Programmierung hatten wir als Team zwar wenig Erfahrung, haben aber in dem Projekt eine Chance gesehen, uns in dieses Thema weiter einarbeiten zu können und unsere Fähigkeiten zu verbessern. 

Architektur

Architektur

Cloud Komponenten 

Vor dem Projektstart hatten wir zu Beginn die Schwierigkeit zu entscheiden, welchen Cloud-Anbieter wir für die Entwicklung nutzen wollen. Voraussetzungen für die Entscheidungen waren, dass es eine ausführliche Dokumentation der Möglichkeiten und Funktionen gibt (aufgrund der mangelnden Vorerfahrung), ebenfalls wollten wir nicht eine Kreditkarte als Zahlungsoption hinterlegen müssen und auch keine bis sehr wenig Kosten verursachen. 

Zu Beginn der Vorlesung hieß es noch, dass wir eventuell ein Konto bei der IBM-Cloud oder über AWS von der Hochschule bekommen würden. Allerdings war dies leider doch nicht der Fall, weswegen wir nach erstem Warten selbst eine Entscheidung treffen mussten. Wir haben uns schlussendlich für AWS (Amazon Web Services) entschieden, da es einer der führenden Anbieter im Cloud Computing ist. Hierbei hat uns gefallen, dass es sehr viele Tutorials und gute Dokumentation zu den einzelnen AWS Services gab. Ein Nachteil war, dass man beim Anlegen eines Kontos eine Kreditkarte hinterlegen musste. Vorteil war andererseits, dass man mit einem Gratis-Kontingent (Free Tier) an Funktionsaufrufen, Rollen, und DB Kapazitäten etc. startet, weswegen im Rahmen des Projektes dahingehend keine Kosten entstehen sollten. Im späteren Verlauf haben wir herausgefunden, dass man allerdings für die Funktionalität von AmazonCloudWatch, welches ein Service zur Einsicht der Logs ist, zahlen muss. Die Kosten waren nicht hoch, weswegen es kein Problem darstellte, allerdings sollte man sich eindeutig über die Kosten, welche bei der Entwicklung entstehen können, im Klaren sein, um nicht böse überrascht zu werden. 

Amazon Free Tier

Übersicht Free Tier : https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%23always-free&awsf.Free%20Tier%20Categories=*all

AWS Services 

Serverless 

Für das Anlegen unseres Projektes und auch der späteren Möglichkeit einer übersichtlichen Vorlage des Codes zur Bewertung, haben wir nach einer Möglichkeit gesucht, alle für AWS benötigten Konfigurationen sowie das Anlegen der verschiedenen Lambda-Funktionen in unserem GitLab Reporsitory hinterlegen zu können und direkt im Code Editor bearbeiten und ändern zu können. 

Nach einiger Recherche sind wir dabei auf das Serverless Framework gestoßen. Vorteile des Serverless Frameworks gegenüber der AWS Grafikoberfläche sind, dass alle man alle Elemente wie Datenbanken, Buckets, API-Routen und Aufrufe sowie Lambda Functions über eine serverless.yaml Datei verwalten kann. Zudem ist es nicht nötig, AWS-Kontoschlüsseln oder anderen Kontoanmeldeinformationen in Skripte oder Umgebungsvariablen zu kopieren oder einzufügen. Über die serverless.yaml können alle Ressourcen und Funktionen übersichtlich und schnell angelegt und bearbeitet werden. 

Functions

In der serverless.yaml angelegte Lambda Funktionen entsprechen dem folgenden Schema : 

Funktion Definition in serverless.yml 

Die in der Datei definierten Funktionen werden jeweils über einen eigenen „handler“ referenziert. Das bedeutet, dass sie über ein „Event“ aufgerufen werden können. Ein Event entspricht dabei beispielsweise einem API-Aufruf. 

broadcast_to_room Lambda-Funktion

Resources 

Neben unseren Funktionen sind in der serverless.yml ebenfalls alle Tabellen sowie Buckets definiert. Dies erleichtert die Einrichtung neuer Ressourcen, welche benötigt werden und gibt eine gute Übersicht. 

iamRoleStatements

Zudem können IAM-Rollen und Berechtigungen, die auf Lambda-Funktionen angewendet werden, konfiguriert werden. 

Allgemeine Konfiguration 

Es können ganz einfach allgemeine Settings angegeben werden, wie zum Beispiel: 

Übersicht der Möglichkeiten: https://www.serverless.com/framework/docs/providers/aws/guide/serverless.yml/

Dynamo DB 

Um unser Spiel umsetzen zu können, waren wir darauf angewiesen, bestimmte Daten in einer Datenbank zu speichern, dies waren beispielsweise Elemente wir eine Raum-ID, die Spielernamen, die gewählten Spielparameter, sowie die benutzen Buschstaben und eingetragene Ergebnisse der Spieler. Da die Einträge in der Datenbank immer variieren und keinem starren Muster folgen, beispielsweise ist es möglich eine unterschiedliche Zahl an Kategorien pro Spielraum zu haben, haben wir nach einer NoSQL Lösung gesucht. Wir wollten eine Datenbank mit nicht-relationalen Ansatz, um nicht von einem festen Tabellenschemata abhängig zu sein. Unsere Wahl fiel dabei auf Amazon DynamoDB, welches eine schnelle NOSQL-Schlüssel-Wert-Datenbank für beliebig große Datenmengen ist. 

Es gibt eine Tabelle „game_data“, welche alle relevanten Informationen enthält. 

Datenstruktur

Ein Beispiel unserer Datenstruktur ist in der folgenden Abbildung zu erkennen:

Diese JSON-Datei zeigt ein laufendes Spiel mit insgesamt zwei Spielern. Ganz oben ist die Room-Id gespeichert, welche einen einzigartigen Wert aufweist. Diese ist für die Spielrunde besonders wichtig, da so mehrere Räume generiert und gleichzeitig laufen können. Der darunter gespeicherte Array „categories“ beinhaltet alle Kategorien als String-Elemente, die der Spieler, der den Raum erstellt hat, ausgewählt hat. Das Dictionary „game_players“ enthält die Informationen zu allen Spielern. Dazu gehört bspw. der Username, der als Key im Dictionary agiert, die jeweilige Raum-Id, die Punkteanzahl sowie die Eingaben, die der Spieler für eine Runde eingegeben hat. Daneben werden zwei weitere Werte gespeichert, „next_round“ und „status“, welche dazu dienen, zu erkennen, dass die nächste Runde beginnen kann, also alle Spieler bereit sind, oder ob der Spieler noch aktiv ist, also das Spiel nicht bereits verlassen hat.

Des Weiteren werden die Rundenanzahl, die Spiellänge für eine Runde, sowie in einem Array die generierten Buchstaben der Runden gespeichert. Dieser wird pro Runde immer um den nächsten zufällig generierten Buchstaben erweitert.

Datenbank-Interaktionen

Während eines Spiels müssen immer wieder Spielerdaten abgefragt, verändert, hinzugefügt oder gelöscht werden. Dazu gehören bspw. das Anlegen eines neuen Spiels, das Hinzufügen neuer Spieler zu der jeweiligen Raum-Id, das Aktualisieren der erreichten Punkte etc. Diese Interaktionen haben wir in den Lambda-Funktionen, die später noch einmal genauer erklärt werden, implementiert und sie werden aufgerufen, sobald diese benötigt werden. Da diese in Python implementiert wurden, haben wir die AWS SDK für Python, Boto3 verwendet, die eine Integration von Python-Anwendungen und Bibliotheken in AWS-Services, darunter DynamoDB, ermöglicht.

Quelle: https://aws.amazon.com/de/sdk-for-python/

Abfragen von Daten

Auch wenn Boto3 als AWS-SDK für Python nützliche Methoden bezüglich DynamoDB bereitstellt, war es nicht immer einfach, diese zu verwenden. Da unsere Datenstruktur durch die Verschachtelungen recht kompliziert war, war es aufwendig, die benötigten Informationen abzufragen. 

Die obige Abbildung zeigt einen Ausschnitt aus einer Lambda-Funktion und stellt die Abfrage von Spieldaten dar. Zunächst wird die Verbindung zu der gewünschten Datenbank (game_data) hergestellt, indem Endpoint-Url sowie die Region angegeben werden muss. Mit dieser Datenbank-Instanz kann nun mit Methoden wie „.get()“ auf die gewünschte Information in der Datenbank zugegriffen werden. Das Verwenden dieser Funktionen war demnach einfach, jedoch wurden die Daten in der DynamoDB sehr oft in Dictionaries gespeichert, welches an vielen Stellen gar nicht nötig war, was in der Abbildung durch das sich wiederholende „.get(‚L‘)“, „.get(‚M‘)“ etc. zu erkennen ist.

In Wirklichkeit waren die Daten nämlich so aufgebaut:

Man erkennt, dass die Daten durch DynamoDB zusätzlich in Dictionaries und Arrays geschachtelt werden und es war schwierig zu erkennen, um was es sich nun handelt. Das Abfragen wurde dadurch viel komplizierter gestaltet, als es eigentlich ist und war auch sehr fehleranfällig.

Anlegen von Daten

Das Anlegen neuer Daten in die Datenbank erfolgt mithilfe der Methode „put_item“, welcher ein JSON-Objekt mitgegeben werden muss. Die Abbildung zeigt das Anlegen eines neuen Raumes.

Löschen von Daten

Das Löschen von Daten erfolgt ähnlich wie das Updaten von Daten, da der jeweiligen Methode „delete_item“ mehrere Parameter mitgegeben werden können, die den Befehl spezifizieren. In unserem Projekt haben wir komplizierte Aufrufe jedoch nicht gebraucht, weshalb das Löschen im Vergleich zum Updaten von Daten einfach war.

Update von Daten

Das Updaten von Daten erfolgt mithilfe der Methode „update_item“, dessen übergebene Parameter komplexer sind als die anderen und auch abhängig davon sind, welche Typen (Array, Dictionaries, ein einfacher Wert) aktualisiert werden sollen. Um zu bestimmen, welches Objekt in der Datenbank bearbeitet werden soll, kann ein sogenannter „Key“, welcher in der obigen Abbildung die Raum-Id ist, mitgegeben werden. Zusätzlich können die übergebenen Parameter überprüft (ConditionExpression) und schließlich bestimmt werden, wie das Objekt aktualisiert werden soll. In diesem Beispiel wird dem Array, der die generierten Buchstaben eines Spiels speichert, um einen Wert erweitert, weshalb als Wert für den Parameter „UpdateExpression“ ein „list_append“ verwendet wird.

S3

AWS S3 (Simple Storage Service) ist ein Service für das Speichern von Objekten. In unserem Projekt haben wir S3 benutzt, um unsere Anwendung zu hosten. Hierfür haben wir einen S3-Bucket erstellt und dort unter „Static website hosting“ die Einstiegs- und Fehlerseite unserer Anwendung angegeben. Damit Benutzer über die dabei erzeugte URL auf unsere Seite zugreifen können, haben wir diese anschließend noch öffentlich zugreifbar gemacht und eine Policy hinzugefügt, um im öffentlichen Modus den Inhalt des Buckets lesen zu können.

Über die AWS CLI können danach immer die aktuellen Files der gebauten Anwendung in S3 hochgeladen werden, wenn die Anwendung deployt werden soll (siehe auch CI/CD Kapitel):

Ausschnitt aus der CI/CD Pipeline zum Hochladen der Dateien in S3

Lambda

„AWS Lambda ist ein Serverless-, ereignisgesteuerter Computing-Service, mit dem Sie Code für praktisch jede Art von Anwendung oder Backend-Service ausführen können, ohne Server bereitzustellen oder zu verwalten. Sie können Lambda in über 200 AWS-Services und Software-as-a-Service (SaaS)-Anwendungen auslösen und Sie zahlen nur für das, was Sie nutzen.“

https://aws.amazon.com/de/lambda/?c=ser&sec=srv

Amazon API- Gateway 

Für die definierten Lambda Funktionen hat man bei AWS die Möglichkeit eine eigene Web-API mit einem http-Endpunkt zu erstellen. Dafür kann man das Amazon API Gateway verwenden. Die Funktion des API-Gateway ist es Tools für die Erstellung und Dokumentation von Web-APIs, die HTTP-Anforderungen an Lambda-Funktionen weiterleiten, zu erstellen. 

Websocket API Routen 

Api RouteBeschreibung
broadcast_to_roomSendet eine Nachricht an alle Spieler in einem Raum anhand der Raum-Id und den in der Dynamo DB gespeicherten Connection-Ids der Spieler.
check_roundsetzt den Status der nächsten Runde des jeweiligen Benutzers und sendet die Nachricht für die nächste Runde an die Spieler im Raum, wenn alle Benutzer die nächste Runde angeklickt haben.
create_room Erstellt einen neuen Raum in der Datenbank mit den angegebenen Werten oder Standardwerten, wenn keine Werte angegeben werden.
enter_roomFügt einen Benutzer zu einem Raum hinzu, indem sein Username sowie die entsprechende Connection-Id in der Dynamo DB unter dem Schlüssel der angegeben Raum-Id gespeichert werden. 
get_current_playersPrüft, ob der Spieler den Raum betreten darf und sendet alle Spielernamen des Raumes an den neuen Spieler.
get_results_for_roomSendet Raumdaten und Spielerdaten an alle Spieler des Raums mit der angegebenen Raum-Id.
load_user_inputslädt alle Benutzereingaben aus der Datenbank und sendet alle Werte (z.B. [[“Stuttgart”, “Rhein”, “Deutschland”]]) an die Spieler des Raums mit der angegebenen Raum-Id.
navigate_players_to_next_roomNavigiert alle Spieler in einem Raum zum Spielraum und wird aufgerufen, wenn der Hauptakteur die Taste “Spiel starten” drückt.
play_roundFragt Timer, Kategorien und Rundeneinstellungen für den Spielraum über die Room-Id aus der Datenbank ab. 
remove_player_from_roomSetzt den Spielerstatus auf inaktiv in der Dynamo DB und löscht die Raumdaten aus der Datenbank, wenn alle Spieler dieses Raums inaktiv sind.
save_roundSpeichert Benutzereingaben aus Kategoriefeldern in der Datenbank.
start_roundBeginnt die nächste Runde, indem er einen neuen Buchstaben erzeugt und prüft, ob dieser Buchstabe bereits ausgewählt wurde und speichert den erzeugten Buchstaben in der Datenbank.
stop_roundStoppt eine Spielrunde, wenn jemand die Stopptaste gedrückt hat. 

Amazon CloudWatch 

Amazon CloudWatch entspricht einem Überwachungs- und Beobachtungsservice für Entwickler.  Wir wollten über CloudWatch die Verwendung unserer API protokollieren. Dabei gibt es die Möglichkeit der Ausführungsprotokollierung. Hierbei verwaltet das API-Gateway die CloudWatch-Protokolle. Es können verschiedene Protokollgruppen erstellt werden, welche dann die verschiedenen Aufrufe, Abfragen und Antworten an den Protokollstrom melden. Zu den protokollierten Daten gehören beispielsweise Fehler. 

Protokollgruppen

Logs der Methode load_user_inputs

Testing 

Beim Testing haben wir uns hauptsächlich auf das Testen der Lambda-Funktionen mit Unittests fokussiert. Dafür haben wir die Bibliothek Moto benutzt, mit der man AWS Services mocken kann. Dadurch konnten wir in den Tests unsere Datenbank mocken und beispielsweise auch testen, ob beim Aufruf der Lambdas Datenbankeinträge richtig angelegt oder Daten richtig aktualisiert werden. Allgemein muss für das Mocken der Datenbank nur die Annotation @mock_dynamodb2 über der Testklasse eingefügt werden und anschließend kann in der setUp-Methode die Datenbank definiert werden, die für die Tests benutzt werden soll. Dadurch können auch Testdaten in die Datenbank eingefügt werden, um bestimmte Testfälle zu testen.

Neben Moto haben wir die Bibliothek unittest.mock benutzt, mit der zum Beispiel das Senden einer Nachricht über die Websocket-Verbindung gemockt werden kann, oder auch der Aufruf einer Lambda-Funktion. Zudem kann man mit Methoden wie assert_called() oder assert_called_with(…) überprüfen, ob und mit welchen Argumenten die gemockte Methode aufgerufen wurde. Allgemein war dies bei unserem Projekt sehr hilfreich, da wir in fast jeder Lambda-Funktion Nachrichten über die Websocket-Verbindung schicken und somit auch testen konnten, ob die richtigen Nachrichten geschickt werden.

Für manuelle Tests oder zum kurzen Testen von bestimmten Eingabewerten war auch die Seite https://www.piesocket.com/websocket-tester sehr hilfreich, da man dort die verschiedenen Lambda-Funktionen über eine Websocket-Verbindung aufrufen kann.

CI/CD Pipeline 

CI/CD Pipeline in GitLab auf dem master-Branch

Um unsere Tests automatisiert ablaufen zu lassen und auch andere Schritte wie das Deployen der Lambda-Funktionen nicht immer manuell ausführen zu müssen, haben wir in GitLab eine CI/CD Pipeline erstellt. Da wir alle vor diesem Projekt noch nie eine CI/CD Pipeline angelegt hatten, konnten wir somit durch das Projekt auch Erfahrungen in diesem Bereich sammeln. Allgemein ist unsere Pipeline unterteilt in verschiedene Stages: In der Testing-Stage werden die Unittests für unsere Lambda-Funktionen ausgeführt. In der Build-Stage werden die aktuellen Versionen der Lambda-Funktionen über das serverless-Framework deployt und anschließend wird unsere Angular-Anwendung gebaut. Am Ende wird unsere Anwendung in der Deploy-Stage deployt, sodass sie danach über eine öffentliche Url verfügbar ist. Je nachdem, auf welchen Branch ein Entwickler in unserem Repository pusht, werden unterschiedliche Jobs ausgeführt. So werden zum Beispiel die Unittests auf jedem Branch ausgeführt, das Deployen der Lambda-Funktionen jedoch nur beim Pushen auf den develop- oder master-Branch und das Deployen der Anwendung nur beim Pushen auf den master-Branch.

Insgesamt gibt es in GitLab unter Settings -> CI/CD die Möglichkeit, Variablen anzulegen, die in der CI/CD Pipeline benutzt werden. Wir haben daher in IAM (Identity and Access Management) bei AWS einen Benutzer für die Pipeline angelegt, der nur die Rechte hat, die in der Pipeline benötigt werden. Die Keys dieses Benutzers haben wir anschließend als Variablen in GitLab angelegt, sodass zum Beispiel das Deployen der Lambda-Funktionen in der Pipeline mit diesem Benutzer durchgeführt werden kann.

Schwierigkeiten 

Während unserer Arbeit am Projekt sind uns einige Schwierigkeiten begegnet, die im Folgenden näher beschrieben werden.

Datenstruktur

Wie bereits beschrieben hatte sich das Abfragen von Daten in der DynamoDB als sehr aufwendig und komplex dargestellt, auch wenn der Methodenaufruf an sich leicht zu verstehen und einfach ist. Durch die weiteren Verschachtelungen, die AWS zusätzlich zu unserer bereits komplexen Datenstruktur hinzugefügt hat, wurde das Abfragen von Daten schwieriger dargestellt, als es eigentlich ist und auch der Code, den wir dafür geschrieben haben, wurde durch dieses sehr unleserlich. Dadurch kam es in unserer Gruppe oft zu Fehlern bei den Abfragen, da der Fehler nicht direkt erkannt wurde und die endgültige Datenstruktur in der Datenbank für unsere Gruppe unklar wurde. 

Wir haben diesbezüglich, auch nachdem wir die Struktur festgelegt hatten, mehrmals gelesen, dass DynamoDB für komplexe Datenstrukturen und Interaktionen (auch das Updaten von Daten) schlichtweg nicht geeignet ist. Dennoch haben wir es dabei belassen, da wir bereits im Projekt weit fortgeschritten waren und keine Zeit mehr hatten, eine Alternative zu finden.

Deployen von Lambdas

Damit die Lambdas, die wir in der serverless.yaml definiert und in den jeweiligen Handler-Dateien implementiert hatten, in unserer Anwendung aufgerufen werden konnten, war es nötig, den Befehl „serverless deploy“ aufzurufen, der alle definierten Lambdas in den Handler-Dateien deployed. Das Problem war, dass dadurch bestehende Funktionen, an denen andere Gruppenmitglieder arbeiteten, anschließend überschrieben wurden, was das Arbeiten sehr behinderte, wenn man an dem Projekt gleichzeitig arbeitete.

Um diese Situation weitestgehend zu verhindern, haben wir beschlossen, die Methoden auf dem Development Branch allesamt mit dem Befehl „serverless deploy“ zu deployen. Anschließend wird auf unterschiedlichen Branches gearbeitet und anschließend nur die Funktion, an der man gerade arbeitet, mit dem Befehl „serverless deploy function –function [Name der Funktion]“ deployed. Dieses hat nur teilweise funktioniert, da das Deployen einer einzigen Funktion nur möglich war, wenn diese bereits existiert, also durch „Serverless deploy“ deployed wurde.

Fazit

Alles in allem haben wir durch das Projekt einen Einblick in die Möglichkeiten von Cloud Computing bekommen und konnten verschiedene Dinge in diesem Bereich ausprobieren. Wir konnten vor allem Erfahrungen mit AWS Lambda, API Gateway und dem serverless Framework sammeln, da dies der Schwerpunkt unseres Projektes war. Zudem haben wir einige grundlegende Dinge gelernt, zum Beispiel dass es sinnvoll ist, schon früh im Projekt eine CI/CD Pipeline aufzubauen oder auch CloudWatch zu aktivieren, um Fehler in den Lambda Funktionen schneller zu erkennen und beheben zu können.

Allgemein haben wir durch das Projekt auch gelernt, dass es sehr wichtig ist, sich am Anfang Gedanken zu Themen wie Security oder auch dem generellen Aufbau des Projektes zu machen. Aus Zeitgründen verfolgt man sonst oft die am schnellsten funktionierende Lösung und kann dann später nur mit viel Aufwand grundlegende Dinge ändern. Für das nächste Projekt würden wir daher mehr Zeit für die Einarbeitung und Recherche einplanen, um dies zu vermeiden. Bei unserem Projekt wäre es vor allem sinnvoll gewesen, schon von Beginn an die verschiedenen Umgebungen einzurichten, sodass alle Entwickler lokal unabhängig voneinander entwickeln und testen können und man auf der Entwicklungsumgebung Änderungen durchführen kann, ohne die Produktivumgebung zu beeinflussen.

Migration einer REST API in die Cloud

Artikel von Cedric Gottschalk und Raphael Kienhöfer

Im Rahmen der Endabgabe der Vorlesung “Software Development für Cloud Computing” haben wir uns zum Ziel gesetzt, eine bereits bestehende REST API eines vorherigen Projektes in die Cloud zu migrieren. Dabei haben wir uns dafür entschieden, die Google Cloud zu verwenden. Im Zuge dieses Projektes haben wir uns auch mit Infrastructure as Code mittels Terraform beschäftigt.

Architektur

Vor dem Umzug in die Cloud lebte die API als Container auf einem einzelnen Server, der mittels Docker Compose verwaltet wurde. Hier wurde nginx als Reverse-Proxy eingesetzt, um die Übertragung mittels TLS zu sichern. MariaDB wurde als SQL-Datenbank eingesetzt. Die Verknüpfung der einzelnen Dienste gestaltete sich hier durch den gemeinsamen technischen Unterbau (Docker) sehr simpel.

Continue reading

MealDB Chatbot mit Google Dialogflow

Ein Projekt von Ronja Brauchle, Julia Cypra und Lara Winter

Einleitung

Gab es bereits drei Tage hintereinander Pasta mit Pesto? Ist das einzig abwechslungsreiche in deinem Speiseplan die Entscheidung ob die klassische Tiefkühlpizza mit Salami oder die extravagantere Wahl des Flammenkuchens nach Bauernart in den Ofen geschoben wird?  Unser MealBot hilft genau bei diesen monotonen und inspirationslosen Phasen: Er schlägt Rezepte basierend auf Lebensmitteln vor, die man gerade zuhause liegen hat; er kann nach Länderküchen und Essensvorlieben Mahlzeiten heraussuchen oder einfach zu einer dir bereits bekannten Mahlzeit das Rezept ausgeben.

Wir haben für das Projekt Dialogflow von Google verwendet, das eine Engine basierend auf NLU (Natural Language Understanding) ist und mit der man intelligente Chatbots erstellen kann. Durch das Anbinden an die MealDB (https://www.themealdb.com/) mithilfe der MealAPI kann unser Chatbot dem User hunderte von Rezepten ausgeben. Der MealBot wurde in Telegram integriert und ist somit dort für jeglichen Chitchat anzutreffen.

Entwurf und Architektur

https://cloud.google.com/static/dialogflow/es/docs/images/fulfillment-flow.svg

Die obige Abbildung visualisiert die Auftragsausführung nach einer Benutzereingabe. Wie bereits erwähnt, ist unser Chatbot in den Messengerdienst Telegram integriert, von dort wird die Benutzereingabe weiter an Dialogflow geleitet. Dank der in Dialogflow integrierten KI kann die Benutzereingabe einem der passenden individuell erstellten Intents zugeordnet werden. Dabei werden außerdem auch bestimmte Parameter aus der Eingabe extrahiert. Ein Intent kann eine vorgefertigte statische Antwort beinhalten, es kann aber auch unter dem Punkt „Fulfillment“ ein Webhook Aufruf aktiviert und somit passender Code getriggert werden. Im Falle eines Webhook Aufrufes werden die extrahierten Parameter, sowie weitere Informationen zu dem zugeordneten Intent in einer JSON HTTPS POST Anfrage, dem Fulfillment Request, an den Webhhokdienst geschickt. Der Webhook kann selbst gehostet werden, dieser muss dann HTTPS POST Anfragen in Form von JSON verarbeiten. In unserem Fall haben wir den Code zur Auftragsausführung im Inline-Editor von Dialogflow erstellt und somit in einer Cloud Function bereitgestellt. Die Cloud Function wird dann durch den Dialogflow getriggert und erhält die Daten aus der JSON Anfrage. Die Cloud Function besteht lediglich aus einer index.js, die Funktionen für die jeweiligen Intents enthält. Durch das passende Intent Matching wird dann auch die jeweilige Funktion ausgeführt. In dieser Funktion wird unsere externe API, die MealDB, abgefragt. Dabei wird je nach Intent ein zugehöriger Endpoint mit den passenden Parametern angesprochen. Die Antwort der MealDB Abfrage wird dann zusammen mit anderen Daten in der Webhook Antwort wieder an Dialogflow zurückgeschickt. Dialogflow extrahiert aus der Antwort die benötigten Daten und sendet diese letztendlich an Telegram, sodass der Endbenutzer die Antwort erhält.

Die untenstehende Abbildung verdeutlicht nochmal den Ablauf mit den von uns benutzten Technologien.

Der Vorteil von Cloud Functions ist, dass diese serverless, günstig und skalierbar sind. Das heißt die Cloud Function ist ereignisgesteuert und wird nur bei einem Event getriggert. Dadurch und wegen der Skalierbarkeit halten sich die Kosten gering.

Basics aka die Bausteine von Dialogflow

Intents

Intents ermöglichen es dem Agenten die Motivation hinter einer bestimmten Benutzereingabe zu verstehen. Jeder Intent stellt eine Aufgabe oder Handlung dar, die der Benutzer ausführen möchte. Im folgenden Bild sieht man die von uns für den MealBot erstellten Intents inklusive der Erklärung dieser.

Ausdrücke, die dasselbe bedeuten, aber auf unterschiedliche Weise konstruiert werden, werden demselben Intent zugeordnet. Somit kommen wir direkt zum ersten Bestandteil (von dreien) eines Intents, und zwar zu den Trainingsformulierungen:

1.Trainingsformulierungen

Trainingsformulierungen sind Beispielsätze für das, was der Endnutzer sagen könnte. Wenn der Endnutzerausdruck einer dieser Sätze ähnelt, stimmt Dialogflow mit dem Intent überein. Jedoch muss man nicht jede denkbare Formulierung angeben, da das integrierte maschinelle Lernen die Liste automatisch um ähnliche Äußerungen erweitert.

2. Parameter

Parameter sind die aus dem Benutzerausruck extrahierten Werte (in der ersten Trainingsformulierung wären es “garlic” und “salt”). Jeder Parameter hat einen Entitätstyp (siehe Abschnitt Entities; hier “Ingredients”). Der bzw. die Parameter werden je nach Intent an den passenden Endpoint geschickt. Aus dem von der Meal API zurückgeschickten Datensatz formt man dann eine Antwort, die dem User ausgegeben wird.

3. Antwort

Bei den meisten Intents konstruieren und formatieren wir die Antwort im Inline-Editor, wo wir mit dem von der API zurückgeschickten Datensatz direkt weiterarbeiten können. Bei Smalltalk bezogenen Intents, die keine API-Anfrage benötigen, wird die Antwort per GUI angegeben:

Beispiel Intent “thanks”

Man unterscheidet bei Antworten zwischen zwei Arten:

1.Standard-Antwort: Bot antwortet auf die Frage und ist anschließend bereit weitere unspezifische Fragen zu beantworten. 

Bsp: Intent “random-meal” : Der User fragt, ob der Bot irgendein Rezept vorschlagen könnte -> Der Bot gibt direkt eins aus und ist bereit, andere Fragen zu beantworten.

2. follow-up-intents: Bot antwortet auf die erste Frage, erwartet dann aber vom User weitere Eingaben, die sachlich auf die erste Frage aufbauen.

Bsp: alle “filter-by” Intents: Der User fragt beispielsweise nach chinesischem Essen, woraufhin der Bot ihm 3 Rezepte vorschlägt und er vom User erwartet, eins auszuwählen.

Entities

Entities werden verwendet, um bestimmte Informationen herauszufiltern, die der Benutzer erwähnt. Sie nehmen nützliche Daten auf und stellen sie zur weiteren Verarbeitung bereit. Man unterscheidet zwischen zwei Arten:

1.System entities, die bereits in Dialogflow enthalten sind und mit denen der Agent ohne zusätzliche Konfiguration Informationen zu einer Vielzahl von Konzepten extrahieren kann.

Bsp: Dialogflow erkennt direkt eine Zeitangabe, ein Datum oder eine Zahl (sys.time, sys.date, sys.number)

2. Developer entities definiert der Entwickler anhand seines individuellen Datensatzes selbst. Bezüglich der Parameter, die wir an die Endpoints der Meal API schicken, haben wir folgende Entities definiert:

“Ingredients”-Entität: Lebensmittel, die in der MealDB vorhanden sind und die der Agent bei einem Benutzerausdruck identifizieren sowie extrahieren könnte

Entity Dilemma

Um eine Benutzereingabe richtig zu verstehen und die passenden Parameter herauszufiltern, muss Dialogflow die zugehörigen Entitys kennen. Denn ist ein Entity vorher nicht bekannt, kann Dialogflow dies auch nicht erkennen und somit eine Eingabe auch nicht dem passenden Intent zuweisen. Sollte der Benutzer zum Beispiel eingeben: „I want to cook pancakes.“, Dialogflow aber nicht weiß was pancakes sind, kann er damit nichts anfangen. Aus diesem Grund mussten wir alle möglichen Gerichte, Länder, Kategorien und Zutaten als Entitys abspeichern. Bei den Kategorien und Ländern ging dies auch relativ schnell. Bei dem Entity „AreaAdjective“ mussten wir ein Adjektiv herausfiltern, da der API Endpoint nur diese akzeptiert hat. So funktioniert zum Beispiel eine Abfrage mit „italian“, wohingeben „Italy“ keine Ergebnisse liefert. Durch das Hinzufügen von Synonymen konnten wir das Problem aber schnell lösen, denn so wird „Italy“ automatisch zu „italian“ umgewandelt. Bei den Gerichten und Zutaten hat es sich aber ein bisschen schwieriger gestaltet. Denn es gibt keinen Endpoint bei der MealDB, mit welchem man alle vorhandenen Rezepte abfragen kann, man kann lediglich alle Rezepte mit einem bestimmten Anfangsbuchstaben abfragen. Deshalb haben wir uns eine kleine Hilfsfunktion erstellt, die in einer Schleife Abfragen mit allen möglichen Buchstaben macht. Die einzelnen Zwischenergebnisse haben wir dann in ein Array gepushed, sodass wir zum Schluss alle möglichen Rezepte zusammen hatten. Diese Rezepte haben wir uns dann ausgeben lassen über die Konsole und als CSV Format in dem Entity „Ingredients“ hochgeladen. Dazu der passende Code, der vielleicht nicht der schönste ist, aber funktioniert hat.

Die Zutaten konnten wir zwar alle über einen Endpoint abfragen, da es aber viel zu vielen waren, um sie von Hand als Enitiy einzugeben, haben wir uns dafür auch eine Hilfsfunktion erstellt. Mit dieser Funktion haben wir die Abfrage formatiert und wieder ausgegeben, sodass wir alle Zutaten auf einmal im CSV Format hochladen konnten. Der Code dazu funktioniert ähnlich wie der obere.

Kontext

Schon mal an einer regen Diskussion von Fremden vorbeigelaufen und Phrasen aufgeschnappt, die für einen als Außenstehender überhaupt keinen Sinn ergeben haben? 

So wie Menschen einen Kontext brauchen, um herauszufinden, was ein bestimmtes Wort oder bestimmter Satz bedeutet, benötigen auch Chatbots sie. Ohne Kontext könnte das Wort bzw. der Satz absolut keine Bedeutung haben oder etwas völlig anderes bedeuten als die ursprüngliche Absicht des Benutzers

Unser persönliches (philosophisches) Kontext-Dilemma

Wie bei den Intents oben bereits kurz skizziert, ist unser Rezept-Vorschlag-Konzept wie folgt aufgebaut: Der Benutzer fragt idealerweise nach einem Rezept basierend auf einer Länderküche, Essenskategorie etc. Darauffolgend schlägt der Agent ihm bis zu 3 Rezepte vor, von denen sich der Benutzer für eins entscheiden kann. Wie man bereits schon ahnen könnte, ist hier ein Kontext erforderlich, damit der Chatbot Aussagen wie “Option 2”,“Ich will das erste” auch zuordnen kann.

Mit voller Motivation haben wir für jeden Intent einen follow-up intent zusammengeklickt, der genau diese Auswahl anhand der Nummerierung der vorgeschlagenen Rezepte erkennen sollte. Somit wurde logischerweise für jeden Intent ein eigener Output-Kontext erstellt, der bei dem jeweiligen follow-up Intent als Input-Kontext wieder eingespeist wurde. Schnell wurde uns beim Code-Schreiben bewusst, dass eigentlich jeder follow-up intent die selbe Logik implementiert, und zwar zu erkennen welches Rezept ausgewählt wurde und dieses formatiert an den User zurückzugeben. Die Idee schlich sich herein, alle individuellen Kontexte der Intents in einen zusammenzufassen und diesen einen bequem in einer Funktion zu verwalten und für alle follow-up intents aufzurufen. Wir gaben der Idee nach, da alles nach unseren Erwartungen richtig ausgegeben wurde. Trotzdem fühlt sich die Lösung nicht ganz “clean” an, da sprachwissenschaftlich gesehen eigentlich jeder Intent vom Inhalt her einen eigenen Kontext verdienen sollte: Ob man gerade nach einer Essenskategorie oder Länderküche gefragt hat, sollte in einer echten Konversation schon einen Unterschied machen. Programmatisch hat es uns die Sache jedoch wesentlich erleichtert.

API Routen

axios.get(“https://www.themealdb.com/api/json/v1/1/categories.php “)

Auflisten aller meal categories. Wird genutzt, um die Beschreibung einer vom Endnutzer eingegebenen Kategorie herauszufiltern und auszugeben.

axios.get(“https://www.themealdb.com/api/json/v1/1/random.php“)

Ausgabe des Rezeptes eines random meals.

axios.get(“https://www.themealdb.com/api/json/v1/1/filter.php”, { params: { a: inputArea } })

Filtern der Gerichte nach einem vom Endnutzer eingegeben Land. Wird genutzt um drei random Gerichte dieses Landes als Optionen dem Nutzer zur Verfügung zu stellen

axios.get(“https://www.themealdb.com/api/json/v2/9973533/filter.php”, { params: { i: paramsIngredients } })

Filtern der Gerichte nach einer oder mehreren vom Endnutzer eingegeben Zutaten. Wird genutzt um drei random Gerichte mit diesen Zutaten als Optionen dem Nutzer zur Verfügung zu stellen.

axios.get(“https://www.themealdb.com/api/json/v1/1/search.php”, { params: { s: inputMeal } })

Filtern der Gerichte nach einem vom Endnutzer eingegeben Gericht. Wird genutzt um bis zu drei Arten dieses Gerichtes als Optionen dem Nutzer zur Verfügung zu stellen.

axios.get(“https://www.themealdb.com/api/json/v1/1/filter.php”, { params: { c: inputCategory } })

Filtern der Gerichte nach einer vom Endnutzer eingegeben Kategorie. Wird genutzt um bis zu drei Optionen aller Gerichte aus dieser Kategorie als Optionen dem Nutzer zur Verfügung zu stellen.

axios.get(“https://www.themealdb.com/api/json/v2/9973533/lookup.php”, { params: { i: mealId } })

Suche nach einem bestimmten Gericht durch den Parameter id und Ausgabe des Rezeptes.

Beispiel Cloud Function for Firebase – FilterByArea:

In der Funktion wird als Parameter der Webhook Client agent übergeben. Über diesen bekommt die Variable InputArea als Wert den Parameter des Entitätstyps “AreaAdjective”, der vom Nutzer eingeben und von Dialgogflow erkannt  und extrahiert wurde. Mit Hilfe der Bibliothek axios wird auf die MealDB zugegriffen. Dabei wird die URL mit inputArea übergeben.  Als Antwort kommen bei res nun die Daten aus der MealDB zurück. Diese werden an die Funktion handleResult() übergeben, welche die Daten filtert. Letztendlich werden die gefilterten Daten über agent.add() zur Antwort, die dem Endnutzer dann angezeigt wird.

Chatbot in Action

1. Intents und Entitäten: Die Nutzereingabe wird mit Hilfe der Trainingssätze und dem Parameter mit dem Entitätstyp dem passenden Intent zugeordnet, dem “filter-by-ingredients” Intent. Somit kommt die passende Antwort zurück. Die Nutzereingabe carrot wird als Parameter “Carrots” des Entitätstypen “ingredients” erkannt. Dialogflow kann dies zuordnen, auch mit anderer Groß – und Kleinschreibung bzw. Ein – oder Mehrzahl.

2. FollowUpIntent: Option 0: Dialogflow erkennt die 0 als passend zu den Trainingssätzen vom Intent “filter-by-ingredients – zero”. Dieser ist ein FollowUp Intent auf “filter-by-ingredients”.

3. Kontext:  Die Nutzereingabe wurde dem “filter-by-area” Intent mit dem Parameter “areaAdjective” = thai zugeordnet. Außerdem wurde der Kontext “user-data” hergestellt. Der Nutzer gibt nun die Option 2 an und der Chatbot befindet im FollowUpIntent “filter-by-area – options” mit dem Parameter value = 2. Das passende Rezept wird ausgegeben. Gibt der Nutzer nun die Option 3 ein, so wird wieder das passende Rezept ausgegeben. Der Chatbot kann die 3 deswegen immer noch als number Parameter des FollowUpIntent “filter-by-area – options” erkennen, da er sich noch im Kontext  “user-data” befindet. Für solche Zusammenhänge ist also der Kontext nötig.

4. Problem: Lasagna Problem: Unter der Option Lasagna kann der Chatbot nichts finden. Unter der Option Lasagna Sandwich jedoch schon. Die Erwartung des Endnutzers könnte allerdings sein, bei der Suche nach Lasagna alle Rezepte die Lasagna im Namen haben zu finden, u.a. Lasagna Sandwich. Die Meal Optionen im Chatbot sind allerdings an die in der MealDB gebunden und in der MealDB gibt es kein Gericht Lasagna. Demnach gibt es in der “Meal” Entitäten Liste auch keine Lasagna. Dialogflow sucht die Entitäten nach Lasagna ab, kann aber keinen genauen Treffer finden und den Wortteil “Lasagna” aus “Lasagna Sandwich” nicht extrahieren und als richtig erkennen. Der Nutzer muss also den gesamten Namen des Gerichts angeben.

Testing

Zum Testing haben wir leider nur wenig gefunden, vor allem zu automatischen Tests, um den Dialogflow als Ganzes zu testen. Zwar gibt es in der Dialogflow GUI die Möglichkeit einzelne Sätze zu testen, wobei auch der zugehörige Intent, Context sowie die extrahierten Parameter angezeigt werden, was auch sehr hilfreich zum Debuggen war. Der nebenstehende Screenshot zeigt, wie dies dann aussieht. So werden zum Beispiel unter dem Punkt „Contexts“ die passenden Contexte angezeigt, da es sich um einen follow-up Intent handelt. Außerdem wurde der passende Intent „filter-by-area“ zugeordnet, sowie der Parameter „italian“. Unter dem Punkt „Diagnostic Info“ kann man noch zusätzlich die JSON Anfrage und Antwort vom Webhook anschauen.

Jedoch kann man in der Google Cloud Console die Cloud Function testen, wie der untenstehende Screenshot zeigt.

Dazu kopiert man die JSON Webhook Anfrage aus der obigen „Diagnostic Info“ und startet den Test. Wie man sehen kann, funktioniert die Anfrage und die passende fulfillmentMessage mit der MealDB Antwort kommt zurück. Außerdem werden darunter auch die Logs angezeigt.

Unser Fazit mit Dialogflow

Vorteile

  1. Dialogflow basiert auf einem sehr intuitiven Konzept; Intents, Entities etc. versuchen die Charakteristiken der natürlichen Sprache nachzustellen, sodass es einem leicht fällt die Funktionsweise eines Chatbots nachzuvollziehen.
  2. Die GUI ist sehr einfach und simpel gehalten; man konnte sich auch ohne Hilfe der Dokumentation schnell zurechtfinden.
  3. Da die KI bereits zur Verfügung gestellt wird, sind keine tieferen Kenntnisse in dem Gebiet notwendig.
  4. Der 90 Tage Testzeitraum war mit circa 300$ Guthaben mehr als ausreichend für einen Chatbot in unserem Rahmen

Nachteile

  1. Der größte Nachteil von Dialogflow war das sehr lange Deployen der cloud functions; ein Durchgang hat circa drei Minuten gedauert. Von daher war es ziemlich nervig, wenn auf Anhieb was nicht funktioniert hat und man bei jedem Rumprobieren, selbst wenn man nur eine Kleinigkeit geändert hat, drei Minuten warten musste. Bei einem tiefergehenden/umfangreicheren Problem, dass von mehreren Codestellen verursacht wurde, kann man sich die Frustration bei dem Fixen mit dieser Wartezeit wahrscheinlich gut vorstellen.
  2. Alle Funktionen mussten in einer einzigen file geschrieben werden. Es kam nicht selten vor, dass paar von uns parallel an der Datei gearbeitet haben, sodass wenn einer das Deployen gestartet hat, die Änderung des anderen verworfen wurden. Wenn eine Person das Deployen gestartet hat, konnten die anderen währenddessen auch nichts abspeichern, da es sofort gecancelled wurde.
  3. Der Inline-Editor ist eher rudimentär aufgebaut und weit von einer vollwertigen IDE entfernt. Es fängt bei banalen Kleinigkeiten an, wie dass man nicht erkennt, welche öffnende Klammer zu welcher schließenden gehört. Aber auch, dass keine Liste an verfügbaren Funktionen vorgeschlagen wird und dass viele Syntaxfehler toleriert werden, die beim Deployen aber zu Errors führen.
  4. Die Dokumentation von Dialogflow ist unvollständig und bleibt sehr oberflächlich. Wir haben viel Stackoverflow benutzt aber mussten letztendlich auch viel Herumprobieren.

Ausblick

Rezepte

Unser Zeitplan ist gut aufgegangen. Da unser Zeitraum – u.a. wegen der limitierten Zeit der Testversion – jedoch begrenzt war, konnten  wir nicht alle erdenklichen Intents in den Chatbot einbauen. Eine Möglichkeit den Chatbot zu erweitern wäre beispielsweise das Erstellen eines dritten FollowUpIntents auf die FilterBy Intents. Dieser würde daraus bestehen, dass der Endnutzer die Option wählt, drei weitere random Meals heraus zu filtern, sofern es genug weitere Gerichte gibt. Im Code müsste ein Teil eingebaut werden, der garantiert, dass die ersten drei Gerichte sich nicht wiederholen und nicht noch einmal mit ausgegeben werden. Der Intent würde außerdem voraussetzen, dass vorher mindestens drei Gerichte ausgegeben wurden. 

Webhook

Um Code nach der Zuordnung zu einem passenden Intent auszuführen, haben wir in Dialogflow unter dem Punkt „Fulfillment“ den Inline-Edior benutzt. Dort gibt es eine index.js und eine index.json, in welchen der gesamte benötigte Code erstellt wird. Der Code wird dann automatisch in Form von einer Cloud Function bereitgestellt und wenn nötig getriggert. Wie aber bereits erwähnt, hat sich das Arbeiten an einer einzigen Datei schwer schwierig gestaltet und das lange Deployen die Arbeit zusätzlich erschwert. Deshalb wäre es bei größeren Projekten mit mehr Intents durchaus eine Überlegung wert, den Webhook selbst zu hosten und die JSON Anfragen zu verarbeiten. So hätte man mehr Kontrolle und kann außerdem besser zusammenarbeiten und debuggen, da das lange Deployen entfällt. Um selbst den Webhook zu hosten, muss dieser ein paar Anforderungen erfüllen:

·   Der Webhook muss HTTPS POST Anfragen verarbeiten, HTTP wird nicht unterstützt

·   Die URL für Anfragen muss öffentlich zugänglich sein

·   JSON Anfragen müssen verarbeitet werden und eine JSON Antwort muss zurückkommen

WebAssembly: Das neue Docker und noch mehr?

If WASM+WASI existed in 2008, we wouldn’t have needed to created Docker. That’s how important it is. Webassembly on the server is the future of computing. A standardized system interface was the missing link. Let’s hope WASI is up to the task!

Tweet, Solomon Hykes (Erfinder von Docker), 2019

Dieser Tweet über WebAssembly (WASM) des Docker-Erfinders gibt einen Hinweis auf die mögliche Innovationskraft dieser Technologie. Der vorliegende Artikel vermittelt zunächst die wichtigsten technischen Grundlagen von WebAssembly, welche zum weiteren Verständnis notwendig sind. Anschließend wird der WASI-Standard näher beleuchtet, welcher die Brücke zur Containervirtualisierung schlägt. Schließlich betrachten wir mit Krustlet (Kubernetes) und wasmCloud zwei existierende Cloud-Technologien, die zentral auf WebAssembly basieren.

Continue reading

Games aus der Cloud, wo sind wir und wohin geht die Reise?

Cloud Gaming – flüssiges Zocken auch mit schlechter Grafikkarte? (esports.com)

Was genau ist Cloud Gaming?

Cloud Gaming lässt sich mit Remote Desktops, Cloud Computing und Video on Demand Diensten vergleichen. Im Grunde beinhaltet Cloud Gaming das Streamen von Videospielen aus der Cloud zum Endkunden. Dabei erfasst und überträgt der Client seine Nutzereingaben (bspw. Maus, Tastatur, Controller) an den Server. Während dieser wiederum die Gesamtspielweltberechnung sowie Nutzereingaben-Auswertung bewältigt. Der Client stellt lediglich die Kapazität bereit, die Frames in der gewünschten Qualität gestreamt zu bekommen. Wesentliche Vorteile ergeben sich für leistungsschwache Geräte, während der offenkundige Nachteil in der Notwendigkeit einer gut ausgebauten Dateninfrastruktur liegt.

Neben Game Streaming gehört zum Cloud Gaming auch das Hosten von Serverinstanzen für Onlinespiele, sowie das Bereitstellen von Plattformdiensten (bspw. Bestenlisten, Chatsysteme, Authentifizierung etc.). Wesentlicher Bestandteil ist des Weiteren das Angebot von leistungsfähigen Downloadservern.

Plattformdienste und etablierte Nutzung der Cloud

Plattform- oder Onlinedienste bieten Schnittstellen, welche Spielemetadaten zur Verfügung stellen. Diese Dienste Umfassen in der Regel Funktionalitäten wie Bestenlisten, Chat- und Gruppensysteme sowie Onlinelobbys, aber auch Metadienste wie Authentifizierung, Analyse, Zuordnung von Spieleridentitäten und Matchmaking. Hierbei können Dienste sowohl öffentlich im Internet als auch intern für andere Dienste zur Verfügung stehen. Während diese Systeme zu Beginn ihres Aufkommens noch als einzelne Monolithen bereitgestellt wurden, bieten heutige Cloudbetreiber solche Dienste als Microservices an. Dies sorgt dafür, dass sich die hohe Skalierbarkeit der Cloud auf die Plattformdienste übertragen lässt. Diese Skalierbarkeit ist vor allem deshalb wichtig geworden, da der Spielemarkt in den letzten Jahren stark gewachsen ist und auch die Spiele selbst immer ressourcenintensiver geworden sind. Als gutes Beispiel kann man hierfür eine der größten Spieleplattformen hernehmen: Steam. Steam integriert viele der angebotenen Spiele in die eigenen Plattformdienste. Dies umfasst Beispielsweise eine Freundesliste, Chatsysteme, Matchmaking und Verbindungssysteme. Zusätzlich wird auch die dahinter liegende Infrastruktur für die Vermarktung der Spiele von Steam gestemmt. Dies umfasst einen Webshop und Downloadserver.

Der große Aufwand und die Nachfrage nach diesen Diensten zeigen sich anhand des weltweiten Datenverkehrs von Steam. So kommt zum Zeitpunkt dieses Blogeintrags allein der deutsche Datenverkehr auf über 35 Petabyte innerhalb der letzten 7 Tage. Und dies wiederum entspricht lediglich ca. 4,3% des weltweiten Datenvolumens.

Aufnahme der Steam Statistiken am 16.03.2022 um 14.48 Uhr – Steam: Game and Player Statistics (steampowered.com)

Diese Zahlen steigen vor allem dann rasant an, wenn es zu speziellen Aktionen kommt, wie etwa dem Release eines neuen, stark erwarteten Spieles oder Sale-Aktionen vergleichbar mit einem Black-Friday für Games. Hierbei kommt es dazu, dass teilweise Millionen von Spielern gleichzeitig das neue Produkt erwerben und herunterladen wollen.

Diese starke Belastung spüren aber nicht nur Shop- und Downloadserver, sondern natürlich auch die klassischen dedizierten Spieleserver selbst. Gerade beim Release eines neuen Massive Multiplayer Onlinespiels (MMO) oder einer neuen großen Inhaltserweiterung versuchen sich gleichzeitig mehrere tausende Spieler auf den Spieleservern einzuloggen, während es zum Normalbetrieb meist nur ein Bruchteil der User ist. Auch hier hilft die hohe Skalierbarkeit der Cloud. Da solche Ereignisse normalerweise zu dem Betreiber bewussten und geplanten Zeiten auftreten können allerdings im Vorfeld schon Ressourcen reserviert und bereitgestellt werden.

Technische Herausforderungen des Game Streaming

Während Plattform- oder Onlinedienste auf die heute weit verbreiteten und gut etablierten Microservice Strukturen und Architektur zurückgreifen, eröffnen sich mit Games as a Service oder Game Streaming ganz neue Herausforderungen. Die Simulation des eigentlichen Spiels kann noch problemlos in einer emulierten Umgebung ablaufen und seine Inputs von außen beziehen, sowie das berechnete Resultat nach außen über einen Video stream abgeben. Das wahre Problem liegt allerdings in der Latenz. Bei Games handelt es sich im Gegensatz zu den meisten anderen Medien um ein interaktives Medium. Das heißt auf eine Aktion des Nutzers muss idealerweise eine unmittelbare Reaktion des Mediums erfolgen. Bei Game Streaming sind die Ansprüche daran besonders hoch, wenn es mit anderen interaktiven Medien wie einem Livestream mit Live Chat verglichen wird. Hier sind Verzögerungen von bis zu 1 Sekunde noch akzeptabel. Bei Spielen hingegen wird eine Latenz von wenigen Millisekunden erwartet. In dieser Zeit muss also die Eingabe beim Client registriert, an den Server geschickt, dort verarbeitet und ein neues Bild an den Client zurückgeschickt, decodiert und angezeigt werden.

Eine abstrahierte, allgemeine Darstellung der Abläufe eine Game Streaming Dienstes – CloudRetroPicture.png (787×492) (webrtchacks.com)

Was kann Cloud Gaming?

Viele Vorteile aus Cloud Computing und Video on Demand Diensten können sich direkt auf Game Streaming übertragen lassen.

  • Für das Spielen von Games aus der Cloud wird keine teure, eigene Hardware benötigt. Der Streamingdienst Betreiber stellt die nötige Hardware zur Verfügung, um das gewünschte Spiel auf einer maximalen Qualitätsstufe darstellen zu können.
  • Um die Wartung, Instandhaltung und Modernisierung der Hardwaresysteme kümmert sich der Streaming Anbieter. Für den Endkunden fallen dadurch keine hohen Einzelkosten an.
  • Spiele stehen jederzeit und überall auf vielen verschiedenen Endgeräten zur Verfügung. Auch leistungsschwache Geräte wie Smartphones, Smart TVs oder einfache Laptops können somit zum Spielen Hardwareintensiver Titel verwendet werden
  • Das Manipulieren und Betrügen in Online- und Singleplayerspielen wird durch das Streaming erheblich erschwert. Dies resultiert direkt aus der Begrenzung der Interaktionspunkte mit dem Spiel. Lediglich die Bildausgabe und die Nutzereingabe finden auf dem lokalen Gerät statt. Jegliche weitere Informationsverarbeitung, wie beispielsweise die Position eines Mitspielers bleiben dem Nutzer verborgen.

Neben den Vorteilen gibt es jedoch auch einige Nachteile:

  • Für Gamestreaming ist zwingend eine durchgehende, leistungsstarke Internetverbindung von Nöten. Denn im Gegensatz beispielsweise zum Video on demand kann bei Game Streaming kein Buffering verwendet werden. Dies ist bei Spielen allerdings nicht möglich, da der weitere Verlauf des Spieles direkt von den Eingaben des Spielers abhängig ist. Ein Verbindungsverlust führt somit zwangsläufig zu einer abrupten Unterbrechung der Spielsession.
  • Schwankungen in der Bandbreite führen zu einer Drosselung der Bildqualität und mindern damit das Spielerlebnis.
  • Das Übertragen bereits in Besitz befindlicher Spiele werden von vielen Anbietern nicht unterstützt. Dies kann dazu führen, dass Spiele entweder nicht zur Verfügung stehen oder nochmals auf der Streaming Plattform gekauft werden müssen.
  • Das Modifizieren der eigenen Spieldaten wird unterbunden, da nicht lokal auf die Spielinhalte zugegriffen werden kann. Dies verhindert, dass Spieler Modifikationen erstellen und ihr Spielerlebnis bei Bedarf individuell anpassen können.
  • Der Anbieter entscheidet welche Publisher und Franchise in seinem Portfolie aufgenommen werden. Dies erschwert vor allem kleine Studios oder Indie Entwickler sich auf dem Markt zu etablieren.
  • Spiele stehen zusätzlich nur solange zur Verfügung so lange sie sich im Angebot des Streamingdienst befinden oder dieser die Lizenzen hierfür besitzt.

Fazit

Cloud Gaming umfasst mehr als nur Game Streaming. Es ist bereits fester Bestandteil der heutigen Infrastruktur, da ein Großteil der Spiele auf Cloud-Dienste zurückgreift oder durch Plattformen wie bspw. Steam in diese integriert wird. Zwar steht Game Streaming an sich gerade erst in den Startlöchern, doch es würde mich nicht verwundern, wenn immer mehr Nutzer umsteigen oder zumindest teilweise auf dessen Vorteile zugreifen würden. Meiner Meinung nach wird es in absehbarer Zeit kein kompletter Ersatz für alle Spieler werden. Allerdings bin ich der Überzeugung, dass Game Streaming zum Netflix der Spieler wird, da es aufgrund der vorhandenen Technologien, Infrastruktur und Kunden über ein hohes Potential verfügt. Die Entwicklung der Streaming Ttechnologien steht allerdings erst an ihrem Anfang. Eine Weiterverfolgung wird sich in jedem Fall lohnen.

Quellen

Überblick über die Cloud-Gaming-Infrastruktur  |  Cloud Architecture Center  |  Google Cloud
Microservices – Wikipedia
Unreal Pixel Streaming in Azure – Azure Gaming | Microsoft Docs
Azure for Gaming – Azure Gaming | Microsoft Docs
Cloud-Gaming: Die besten Anbieter im Vergleich | heise Download
Cloud-Gaming im Vergleich: Die besten Spiele-Streamingdienste | NETZWELT
Cloud Gaming – flüssiges Zocken auch mit schlechter Grafikkarte? (esports.com)
Cloud gaming – Wikipedia
Xbox Cloud Gaming – Wikipedia
What is cloud gaming and how does it work? – Dot Esports
How Cloud Gaming and Streaming Games on Stadia and xCloud Works (makeuseof.com)
Open Source Cloud Gaming with WebRTC – webrtcHacks
Youtube: Google WebRTC project update & Stadia review

Discord Monitoring System with Amplify and EC2

Abstract

Discord was once just a tool for gamers to communicate and socialize with each other, but since the pandemic started, discord gained a lot of popularity and is now used by so many other people, me included, who don’t necessarily have any interest in video gaming. So after exploring the various channels on discord, I found that most of them have some kind of rules that users have to adhere to. But with channels that have more than 100 members, moderating becomes really tedious. The idea behind this project, which is a part of the lecture Software Development for Cloud Computing, is to automate this process by creating a discord monitoring system.

Features

With this system, an admin can add words that they want to be prohibited in the chat. These words are then used to delete messages that don’t adhere to the rules or to flag these messages for an admin to review when the system is not 100% certain that the message contains harmful content.

Architecture

Frontend

The client side is fairly simple, it is built with React.js and only has two sections. The first is flagged messages, where a moderator is able to review messages the system has flagged.

The second is where a moderator can add or remove censored words as shown below.

Backend

The server side of this monitoring system is built using express.js. The library discord.js was used to communicate with the discord api, and for the database I used dynamoDB.

The main part of the app is the following code:

discord.client.on("ready", () => {
  console.log(`Logged in as ${discord.client.user?.tag}!`);
  discord.client.on("message", (msg) => {
    const status = monitorSys.getScannedMessageStatus(msg.content);
    if (status === "FLAG") {
      flaggedMessagesController.addFlaggedMessage(msg);
    } else if (status === "HARMFUL") {
      messagesController.deleteHarmfulMessage(msg.id);
    } else {
      console.log("SAFE");
    }
  });
});
start();
discord.client.login(process.env.DISCORD_KEY);

Here the bot goes online and starts scanning every message that goes into the chat. With a helper method the system then either flags a message or deletes it right away if it contains harmful content.

EC2

The backend is deployed on an ec2 instance that is based on an Amazon Linux image. When creating this instance we add a script, as shown below, to install the CodeDeploy Agent that we are going to use later for the CI/CD.

#!/bin/bash
sudo yum -y update
sudo yum -y install ruby
sudo yum -y install wget
cd /home/ec2-user
wget https://aws-codedeploy-us-east-1.s3.amazonaws.com/latest/install
sudo chmod +x ./install
sudo ./install auto

Then we need to add these rules as shown below. The one with port 80 is necessary to be able to download data from the internet and the one with port 3000 is for the client to have access to our server.

CI/CD

Frontend

CI/CD On the frontend was done using GitHub actions and amplify. With GitHub I created an action that runs whenever a branch gets pushed. This pipeline runs our tests first and checks if all succeed. If one or more tests fail, this branch can’t be merged to main. This restrictions can be activated directly from the settings of our repository on GitHub. To create this action, create a file ./.github/workflows/tests.yml with the following:

name: Node.js CI
on:
  pull_request:
    branches: [ main ]
jobs:
  test:
    runs-on: ubuntu-latest
    strategy:
      matrix:
        node-version: [16.x]
    steps:
    - uses: actions/checkout@v2
    - name: Use Node.js ${{ matrix.node-version }}
      uses: actions/setup-node@v1
      with:
        node-version: ${{ matrix.node-version }}
    - run: npm ci
    - run: npm install
    - run: npm test

After a branch gets merged with main, Amplify builds the new version and deploys the app when the build is ready. Amplify provides a really straightforward way to deploy a React app. We just have to create a new app on Amplify and connects it with a specific branch on GitHub.

Amplify then detects the Javascript library that’s being used e.g. React, Vue or Angular and adjust the settings accordingly. Environments variables can be added directly on Amplify.

Backend

Here I used CodeDeploy to deploy the newest version of our backend whenever it’s pushed to the main branch. To achieve this, we need to first create a pipeline on CodeDeploy and connect it to our repository on GitHub, which is similar to what we did on Amplify. After that we need to add some scripts to our project for CodeDeploy. These files should be stored inside of ./scripts.

The first script file we need is called before_install.sh

#!/bin/bash

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
. ~/.nvm/nvm.sh
nvm install node

DIR="/home/ec2-user/discord-monitoring-server"
if [ -d "$DIR" ]; then
  echo "${DIR} exists"
else
  echo "Creating ${DIR} directory"
  mkdir ${DIR}
fi

With that we first download node and npm and then we create a working directory if it does not already exist.

Then we create a file called application_start.sh

#!/bin/bash
#give permission for everything in the discord-monitoring-server directory
sudo chmod -R 777 /home/ec2-user/discord-monitoring-server
#navigate into our working directory where we have all our github files
cd /home/ec2-user/discord-monitoring-server
#add npm and node to path
export NVM_DIR="$HOME/.nvm" 
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"  # loads nvm 
[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion"  # loads nvm bash_completion (node is in path now)
#install node modules
npm install
#start our node app in the background
npm start > app.out.log 2> app.err.log < /dev/null &

And lastly, we have application_stop.sh:

#!/bin/bash
#Stopping existing node servers
echo "Stopping any existing node servers"
pkill node

After creating these scripts we also need to add the appspec.yml file, which specifies the target folder in our ec2 instance and 3 hooks, each with its respective script file we created earlier.

version: 0.0
os: linux
files:
  - source: /
    destination: /home/ec2-user/discord-monitoring-server
hooks:
  ApplicationStop:
    - location: scripts/application_stop.sh
      timeout: 300
      runas: ec2-user
  BeforeInstall:
    - location: scripts/before_install.sh
      timeout: 300
      runas: ec2-user
  ApplicationStart:
    - location: scripts/application_start.sh
      timeout: 300
      runas: ec2-user

Conclusion

During the Software Development for Cloud Computing lecture, we learned a lot of theory about cloud computing and the different services Amazon and IBM provides. We also got to see some examples on the different subjects that were discussed during the semester. But with this project I was only able to implement and work on some of these topics. The first and main one was deploying the app on Amplify and EC2 and the second, which I personally found very interesting, is continuous integration and continuous delivery. This lecture gave me a really good overview on what can be achieved with cloud computing and I am hoping to learn way more about the topic in the near future.

“Himbeer Tarte und harte Fakten”: Im Interview mit Ansible, k3s, Infrastructure as Code und Raspberry Pi

Why so serious? – Ein Artikel von Sarah Schwab und Aliena Leonhard im Rahmen der Vorlesung Systems Engineering and Management.

Die Idee, ein fiktives Interview zu erstellen, entstammt daraus komplexe Sachverhalte unterhaltsam und verständlich zu machen.

Raspberry Fruit

Wir sind heute zu Gast in der Tech-Sendung “Himbeer Tarte und harte Fakten”.  Heute geht es unter Anderem um die Themen “Raspberry Pi”, “Infrastructure as Code” und “Ansible”. Vier Experten haben wir zu einer Diskussionsrunde eingeladen. Herzlich Willkommen, Frau Ann Sibel, Herr Kah Dreis, Herr Archie Tex-Ture und Frau Infra Struc-Ture. 

Continue reading

Applikationsinfrastruktur einer modernen Web-Anwendung

ein Artikel von Nicolas Wyderka, Niklas Schildhauer, Lucas Crämer und Jannik Smidt

Projektbeschreibung

In diesem Blogeintrag wird die Entwicklung der Applikation- und Infrastruktur des Studienprojekts sharetopia beschrieben. Als Teil der Vorlesung System Engineering and Management wurde besonders darauf geachtet, die Anwendung nach heutigen Best Practices zu entwickeln und dabei kosteneffizient zu agieren

Continue reading

Ynstagram – Cloud Computing mit AWS & Serverless

Im Rahmen der Vorlesung “Software Development for Cloud Computing” haben wir uns hinsichtlich des dortigen Semesterprojektes zum Ziel gesetzt einen einfachen Instagram Klon zu entwerfen um uns die Grundkenntnisse des Cloud Computings anzueignen.

Grundkonzeption / Ziele des Projektes

Da wir bereits einige Erfahrung mit React aufgrund anderer studentischer Projekte sammeln konnten, wollten wir unseren Fokus weniger auf die Funktionalität und das Frontend der Applikation richten und ein größeres Augenmerk auf die Cloud spezifischen Funktionen und Vorgehensweisen legen. 

Konkret planten wir die Umsetzung eines Instagram Klons mit den grundlegenden Funktionalitäten:

  • Bilder bzw. Beiträge hochladen
  • Titel & Beschreibung von Beiträgen anlegen
  • Liken von Beiträgen 
  • Kommentieren von Beiträgen
  • Accountmanagement

Entwurfsentscheidung

Frontend

Aufgrund von bereits existierenden Vorkenntnissen und guter Erfahrungen entschieden wir uns für die Umsetzung des Frontends mit Hilfe des React Frameworks. Mit der Gestaltung als Web App ergibt sich zudem der Vorteil, dass “Ynstagram” Plattform übergreifend erreichbar ist.

 

Backend – von Firebase zu AWS

Zunächst starteten wir unser Projekt mit Firebase umzusetzen. Zum einen verlor dies jedoch seinen Reiz hinsichtlich des Lerneffekts, da wir parallel unser Softwareprojekt mit Firebase verwirklichten. Gleichzeitig wurde uns durch die Einblicke in den Vorlesungen ein Bewusstsein für den Funktionsumfang von AWS geschaffen.

Interessant war für uns hierbei beispielsweise die wesentlich umfangreicheren Einsatzmöglichkeiten von Lambda Funktionen. Während diese in Firebase nur durch Einträge / Trigger geschehen kann, konnten wir hier auf API Aufrufe zurückgreifen. Auch die umsetzbaren Funktionalitäten gestalteten sich als wesentlich umfangreicher. So bot sich uns unter anderem die Möglichkeit Bilder beim Upload automatisiert zu skalieren und perspektivisch ließe sich auch recht einfach eine Analyse von Inhalten mit Hilfe von Künstlicher Intelligenz umsetzen. Während man bei Firebase in all dem schnell an gewisse Grenzen kommt, gibt es bei AWS einen viel breiteren Horizont an Möglichkeiten. 

Dennoch gestaltete sich dieser Umstieg keineswegs als einfach, denn Firebase bietet eine wesentlich bessere Übersichtlichkeit und Dokumentation.

Serverless

Da uns die AWS Web Oberfläche und die Online Erstellung von Lambda Funktionen keineswegs ansprachen suchten wir nach Lösungen um alle Konfigurationen wenn möglich auch auf Github hinterlegt zu haben und im Code Editor anlegen zu können. 

Dabei sind wir letztlich auf Serverless gestoßen. Hier werden alle Buckets, Tabellen und API Aufrufe über ein serverless.yaml File verwaltet. So lassen sich neue Elemente viel übersichtlicher / schneller anlegen und Konfigurationen können einfach von bereits erstellten Elementen übernommen werden. 

Postman

Um einen Überblick über die erstellten API Routen zu behalten und um diese einfach testen zu können, haben wir uns für Postman entschieden. Über ein in Github geteiltes File können so alle am Projekt beteiligten die aktuellen API Routen sehen und neue Aufrufe anlegen.

Umsetzung / Architektur

AWS Services

DynamoDB

Da wir bereits in Firebase auf die dortige NoSQL Datenbank “Firestore Database” zurückgegriffen hatten, entschieden wir uns hier für eine Beibehaltung dieser Datenbankstruktur. Der Vorteil liegt dabei gegenüber SQL Datenbanken in einfacheren Abfragen bedingt durch eine flachere Datenstruktur. 

Wir verwenden DynamoDB Tabellen um die zu den Bildern gehörenden Informationen wie z.B. Titel, Beschreibung, Autor etc. zu speichern. Die Verknüpfung der Bilder mit den Datensätzen in den Tabellen erfolgt dabei durch eine einzigartige ID.

Es gibt dabei 2 Tabellen, eine in der zunächst die Eingaben gespeichert werden, und eine weitere in die verarbeitete Datensätze übertragen werden. 

Beide Tabellen sind dabei strukturell gleich aufgebaut. Zentral sind hier eine eindeutige ID, Datum der Erstellung, Account Name des Erstellers, sowie Beschreibung und Titel des Beitrags. Kommentare und Likes werden über Arrays verwaltet. 

S3

In S3 Buckets sind die zu den Beiträgen hinterlegten Bilder gespeichert. Dabei gibt es einen Bucket mit den Originaldateien, sowie einen mit verringerter Auflösung. Der Name der Bilder entspricht dabei stets der den Beiträgen zugehörigen einzigartigen ID.

Cognito

Mit AWS Cognito konnten wir in wenigen Schritten unser Account Management einrichten. Cognito bietet dabei die Unterstützung aktueller Identitäts und Zugriffsmanagement Standards wie zB. Oauth 2.0 und SAML 2.0 und bietet gleichzeitig auch die Möglichkeit Multifaktor Authentifizierung zu implementieren. 

Amplify

Wir nutzen AWS Amplify um das Frontend unserer Applikation zu hosten und um hierfür eine CI/CD Pipeline mit Development und Master Umgebung zu realisieren. Eine genauere Erklärung hierzu findet sich im Abschnitt “CI/CD Pipeline”.

Lambda 

API Gateway

Ein großteil unsere Lambda Funktionen wird über API Aufrufe genutzt. Eine Übersicht dieser haben wir wie eingangs erwähnt in einem Postman File hinterlegt.

API-Routen

POST /image-upload

Hochladen eines Bildes in den S3 Bucket. Wird sowohl mit Bilddaten als auch mit dazugehörigen Informationen wie Beschreibung und Titel aufgerufen (JSON-Format). 

POST /image-info

Erstellt einen Eintrag in die DynamoDB Tabelle mit sämtlichen Informationen zu einem Beitrag, wird im Body als JSON übermittelt. 

POST /create-file

Erstellt eine Datei im S3 Bucket. Der Dateiname entspricht dem URL Parameter.

GET /get-all-images

Gibt alle als “valid” markierten Beiträge als Array im JSON-Format zurück.

GET /get-file

Gibt eine Datei anhand des Dateinamens zurück. 

GET /image-info

Gibt die Informationen zu einem einzelnen Beitrag im JSON-Format zurück.

PUT /update-image-info

Genutzt um Kommentare zu Beiträgen hinzuzufügen. Updated Einträge in der DynamoDB Tabelle.

PUT /update-likes

Verwendet um neue Likes hinzuzufügen.

DynamoDB / S3 Trigger

Neben direkten API Aufrufen verwenden wir auch Trigger auf DynamoDB Tabellen, sowie S3 Buckets. 

Exemplarischer Ablauf eines Image Uploads

Dies lässt sich am Besten am Ablauf einer Beitragserstellung darstellen.

Per Post-Request wird zunächst die Lambda Funktion “imageUpload” aufgerufen, welche das Bild in dem S3 Bucket hinterlegt. Dann wird über einen Trigger automatisch die Lambda Funktion “imageResize” aufgerufen, welche die Bilder auf eine Auflösung von 400 x 400 Pixeln skaliert. Diese Bilder werden dann im Bucket für skalierte Bilder gespeichert. So können die Bilder im Feed gerade bei Mobilen Geräten schneller geladen werden.

Parallel dazu wird in der DynamoDB Tabelle ein Eintrag angelegt. Auch hier wird ein Trigger aufgerufen der seinerseits die Funktion “changeText” aufruft. Diese ersetzt in Anlehnung an den Namen “Ynstagram” alle “i” in Beschreibung und Titel durch “y”. Hierbei handelt es sich lediglich um eine Spielerei die aus unserem Interesse entstand verschiedenste Trigger und Einsatzmöglichkeiten von Lambda Funktionen auszuprobieren.

CI/CD Pipeline

Interessant war es für uns zudem erstmals wirklich Erfahrung mit einer CI/CD Pipeline zu sammeln. Wir planten dabei die strikte Unterteilung in eine Entwicklungsumgebung und einer dieser prinzipiell gleichen finalen Umgebung. So dass der aktuelle Stand schon unter realistischen Bedingungen getestet werden kann bevor er letztlich veröffentlicht wird.

Diese CI/CD Pipeline haben wir mit AWS Amplify und Github Actions umgesetzt. Dabei wird zunächst stets auf einen Development Branch gepusht, welcher dann automatisch auf eine Entwicklungsumgebung auf Amplify hochgeladen wird. So können zunächst alle Tests durchgeführt werden, bevor dann mit einem Pull request die Änderung auf den Master Branch übertragen werden. Wenn dies geschehen ist, werden diese ebenfalls automatisch in die Produktionsumgebung übernommen bzw. deployed.

Hier wird neben den durch Github Actions durchgeführten Tests auch überprüft ob die Web Anwendung auch auf verschiedenen Geräten richtig skaliert und damit überprüft ob die UI für den Nutzer funktionsfähig angezeigt wird. Der aktuelle Stand wird dabei selbstverständlich nur übernommen, wenn alle Tests erfolgreich abgeschlossen werden.

Serverless

Um der Unübersichtlichkeit der AWS Weboberflächen aus dem Weg zu gehen und um Elemente leichter und reproduzierbar, über Git verwaltet anlegen zu können haben wir uns für Serverless entschieden. Hier werden alle AWS Komponenten in einem “serverless.yaml” File angelegt. 

Variablen

Es gibt dabei zum Beispiel auch die Möglichkeit unkompliziert Environment Variablen anzulegen:

Welche wir wiederum über eigene custom Variablen, welche an verschiedenen Stellen genutzt werden definiert haben:

Dies bringt den Vorteil mit sich, dass Namen flexibel verändert und direkt überall übernommen werden, sprich sowohl in AWS als auch im Code über die Environment Variablen.

Functions

Gleichermaßen einfach lassen sich auch die Lambda Functions anlegen. Diese werden jeweils über einen “handler” referenziert und werden dann durch ein “event” aufgerufen, was entweder API Aufrufe oder eben bspw. DynamoDB / S3 Trigger sein können.

Resources

Auch alle Buckets und Tabellen sind im .yaml File definiert. So können insbesondere neue Elemente sehr einfach angelegt werden, da man direkt auf zuvor definierte Konfigurationen zurückgreifen kann.

Testing

Beim Testen haben wir uns vor allem auf die API Aufrufe und die grundsätzlichen Funktionen fokussiert. Grundsätzlich werden unsere Tests über die im Abschnitt “CI/CD Pipeline” dargestellte Pipeline mit Github Actions ausgeführt. Diese sind auch Bestandteil des Amplify Deployment Prozesses. Zusätzlich dazu haben wir CircleCi implementiert um die Serverless Komponenten automatisch zu deployen. Für das Testing nutzen wir allgemein ein lokales Mock-Up unserer DynamoDB da wir hier schnell auf das Problem gestoßen sind, dass unsere freien AWS Kontigente aufgebraucht waren.

Ausblick / Fazit

Die größten Schwachstellen des Projektes liegen aktuell in nicht abgesicherten API Aufrufen, diese ließen sich über die Verwendung von API Keys schützen. Dabei sollten perspektivisch auch die Zugriffe auf DynamoDB sowie S3 über IAM Role verwaltet werden. 

Für die Accountverwaltung wäre es sinnvoll die Multifaktor Authentifizierung einzurichten. Der Funktionsumfang ließe sich selbstverständlich noch deutlich ausbauen, wobei besonders die Nutzung von KI Komponenten für uns interessant wäre.  

Insgesamt konnten wir, ausgehend von keinerlei Grundkenntnissen im Bereich Cloud Computing, uns mit Hilfe der Umsetzung des Projektes im Rahmen der Vorlesung einen Überblick und ein Grundverständnis für die Welt des Cloud Computings erarbeiten, welche eine solide Basis bieten um zukünftig die vorliegenden Ansätze noch wesentlich weiter zu vertiefen.

Deploying Random Chat Application on AWS EC2 with Kubernetes

1. Introduction

For the examination of the lecture “Software Development for Cloud Computing”, I want to build a simple Random Chat Application. The idea of this application is based on the famous chat application called Omegle. Omegle is where people can meet random people in the world and can have a one-on-one chat. With Omegle people can have a conversation with not only normal chat but also a video chat. Not like Omegle, my application has only a normal texting function.

2. Technologies for the development of application

a. Frontend

React

For Frontend Development there are a great number of open-source libraries. React is recently one of the most popular and widely used libraries. There are many reasons for a developer to choose and use React. It is one of the most popular front-end technologies in the market. Compared to other libraries out there React seems to be easier to learn. As it doesn’t take much time to learn this technology, the developers can rapidly practice and build their own very first project. React helps increase productivity by using reusable components and development tools. There are many development tools available for React that speech up the project. The most important reason is that it has very strong community support. There are thousands of free React tutorial videos and blog posts on the internet which is very helpful for the developer. Therefore, I decided to learn this library during previous semesters. This project gives me a chance to have real practice.

b. Backend

Node.js

Node.js has become one of the most popular JavaScript tools. Node.js is a JavaScript runtime environment, which allows companies to improve their efficiency of the web development process. The frontend and Backend teams can now work more easily together. Since Node.js is written in JavaScript and bases on Google V8 Engine, everything is done very quickly. Node.js can create an Event Loop, which can cover all asynchronous input-output operations.  And the best part is that it can increase the speed of any other framework as well. By allowing developers to write JavaScript code for both the Frontend and the Backend, Node.js makes it easy to send data between the server and the client, which makes it easier to synchronize data immediately.

Socket.io

When I decided to develop a chat application, I already thought about Socket.io. I had a chance to know this JavaScript library during the course Web Development 2. To build a real-time application we should use Socket.io. Socket.io will help parties in different locations connect with each other, transmitting data instantly through an intermediary server. Socket.io can be used in many applications such as chat, online games, updating the results of an ongoing match, … It is used a lot by the developer community, because of its speed and convenience. Socket.io provides us with many methods as well as outstanding features such as security, auto-connect, disconnection detection, multiplexing, room creation, …

3. Application explanation

a. Client

As I mentioned, for the client-side I use React. Therefore, I have a chance to know the concept of a Single Page Application, whose content is loaded only once and updated dynamically. For the interaction with the page or with subsequent pages, we don’t need another server, which means that the page is not reloaded. To apply this concept of the web application, React offer a packet names “react-router-dom”. My application is very simple, so it only has two paths to be loaded. The root path is where the user inputs his name, and it will load the Join component. The other path is the Chat component, in which the user sends messages after getting a room.

Socket.io library for the client is imported because it is not provided by JavaScript. This will expose the ‘io’ namespace.

Endpoint URL will be given for ‘io’ to connect with the socket.io server.

Now users can send and receive messages from the server after the room is created.

b. Server

To setup server, some packets need to be imported:

The server is set up and listen on port 5000

The server can also save users temporally, so it will know which user’s name already existed. And then it can remove users after they terminate their chat. To execute all those actions, I write a users.js file, which will have some functions such as, addUser, removeUser, getUser, …

I want to create a chat application where users don’t have to have an already known friend and a Chat room will be automatically created for them. With this application, they can meet a new friend and the server will get them a chat room.

I created a variable queue, which is an array. It will save a user, who has not had any partner yet, temporarily. Every user, who already inputted their names, will be connected to the socket. Socket knows that he wants to join a room. In the callback function of the socket, the name and socket ID of the user will be saved by function ‘addUser’, which is in users.js. Then socket will check if any other user is waiting for a partner in a queue. If someone is waiting for a partner, he will be popped from the queue. His socket and partner’s socket will be connected. And their room ID will be a combination of the 2 socket IDs. If no one is waiting for a room, the current socket is pushed to a queue and wait for another user to join.

c. Problem

CORS: 

It is an abbreviation for Cross-Origin Request Sharing, which means that all data should come from the same resource. They use it as a security measure because JavaScript can load content from other servers without the knowledge of the user. This problem can be solved when both websites are aware of the data exchange, then the process will be allowed.

I installed the CORS package on my server. Origin will configure the Access-Control-Allow-Origin CORS header. Now client and server can communicate without error.

4. Testing

Testing is very important during the development of the application. Testing helps developers to discover existing errors/bugs before releasing the application. Therefore, the quality of the application would be enhanced. I decided to test only the server-side because it is more complicated than the client-side. Two tests are being created.

  • A single user testing: tests if he can connect to a server and receive a welcome message from the server.
  • Two users testing: tests if a room can be created when there are two users and both of them can receive the same welcome message from the same room.

5. Deployment

a. Docker Swarm and Kubernetes

When deploying this project, I create a container for each of the client and server sites. Docker is the most popular solution for the container platform. I want to learn to write a DockerFile and a docker-compose to create a container.

For the cloud development environment, I choose Amazon Web Service. It is currently one of the most comprehensive platforms for cloud computing services. I use an EC2 virtual server to make my project online. I would like to work with Kubernetes to manage the containers. I choose EKS, which is a service from Amazon web service.

If you work with a lot of containers, you have to be able to manage them efficiently. An orchestration tool enables exactly that. With the orchestration tool, you can integrate containers that you created with Docker. Then you use orchestration to manage, scale, and move the containers.

Although Kubernetes and Docker can work well together, there is competition when it comes to Docker Swarm. I have considered some features of Docker Swarm and Kubernetes.

  • Scaling: The load on our application is too high, Kubernetes can add more nodes to our cluster. Of course, we have to configure Kubernetes correctly so that it can create a new virtual machine. Then a node is added to the cluster.
  • Installation: with Docker Swarm, it is easy to create a new node, then integrate it with Swarm. On the other hand, to configure Kubernetes you have to determine the size of the node, how many master nodes, and worker nodes.
  • Load balancing: Docker swarm offers application auto load balancing. However, Kubernetes gives the flexibility to configure load balancing manually.
  • Storage volume participation: since the docker swarm manages Docker containers, containers find it easy to share data. Not just data, as well as other things. Kubernetes puts the container in a pod so the container cannot simply communicate with another. You need other components from Kubernetes, e.g., Service to create the connection.
  • Monitoring: While Swarm requires additional resources for monitoring and keeping a log, these tasks are already provided for in Kubernetes.

b. Amazon EKS and Kops

When deploying Kubernetes on AWS, you can configure and manage the deployment yourself for full flexibility and control. There are a few options for self-management: Amazon Elastic Kubernetes Service and Kops.

EKS is a managed service offered by AWS. EKS uses automatically provided instances and offers a managed control plane for deployment.

Kops is an open-source tool that can be used to automate the deployment and management of clusters on AWS. It is officially supported by AWS.

c. Docker File

To work with Kubernetes, I need to create all necessary containers. Containers are created by writing docker files. These docker files contain all information about the container, e.g.: name of the image, directory store our application, port, … Docker will follow this information, then step by step, create containers. Besides, I use Docker Compose to start the process of creating containers.

d. Kubernetes architecture on AWS cloud

I choose Kubernetes, Amazon EC2, EKS, ECR for the deployment of my project. What is showed below is the architecture of Kubernetes on AWS cloud.

Source: https://blogs.tensult.com/2019/08/14/guide-to-setup-kubernetes-in-aws-eks-using-terraform-and-deploy-sample-applications/

Kubernetes server is a control panel. It creates a cubic cluster. In the cluster, there are master nodes that create and manage worker nodes. When you call deployment commands, the Kubernetes server sends messages to EKS, then EKS sends the tasks to the worker nodes.

Worker node contains some pods, in which the docker container will be run. I choose controller Deployment to keep these pods running and observe them. For the worker node, I create a pod for the client, 2 pods for the server, and a pod for Redis. The load balancer can be used to communicate with the application from outside. 

I decided to have 2 pods Server because I want to scale my application. In case when more people try to connect to my application, the request will be handled faster when we have 2 pods instead of 1 pod. The picture below shows a horizontal scaling, which means that it has more copies of the application and these copies can work with each other at the same time.

For example: for the pod client I write a client-deployment.yaml file

  • A deployment named client is created, indicated by the .metadata.name field.
  • The .spec.selector field defines how the deployment finds the pods to be managed.
  • The deployment creates one replica pod, indicated by the .spec.replicas field.
  • the .template.spec field indicates that the pod is running a container. The container is created by docker image, which has been saved in ECR (Elastic Container Registry)
  • The container is created using the .spec.template.spec.containers.name field which is called client.

To enable network access to the set of pods I have to create a Service, which is written in client-service.yaml.

This specification creates a new service object called “client” that targets TCP port 3000 on each pod, which is labeled as app = random-chat.

For pods Server and Redis, I also create Deployment and Service for each.

e. Problem

Service of pod Server:

Pods can usually send requests with each other by using a normal type of Service, which means, in my case, that the pod Client can send a request to the pod Server without having an attribute ‘type’ in server-service.yaml. The Endpoint of the Client will be ‘server:5000’, which is the combination of the name of the service and the targetPort. But after many attempts, it still does not work. So, I decided to make the Service of pod Server as type Load Balancer, which is shown in the picture above. Now the Endpoint of the client will be the address of this Load Balancer.

6. Conclusion

During the course ‘Software Development for Cloud Computing’ and this project, I have a chance to know the concept of Docker containers and how to manage them with Kubernetes. I gain not only theoretical knowledge but also practical experience by developing and deploying the application. Moreover, working with cloud computing is new and interesting for me. Cloud computing is nowadays applied in the development of applications a lot. What I applied in my project is just a small part of cloud computing and I want to learn more about it in the future.